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INTEGRAL ESTIMATE OF THE PRESSURE IN AN INCOMPRESSIBLE MEDIUM* 

IA. A. KAMENIARZH 

In the case of incompressible media the problems of equilibrium or of 
slow steady motion can, in many instances, be formulated without taking 
the pressure into account. The resulting "deviator" problem is usually 
easier to tackle, but it yields the stress deviator field T only. The 
question arises in this connection of the possibility of returning to 
the initial formulation, i.e. of supplementing t by a pressure field p, 
such that the condition of equilibrium with given volume and surface 
forces will hold for the stresses e=*i-pg(g is the metric tensor). 
Since the general assertionsdonot, as a rule , guarantee the smoothness 
of r , the problem needs special attention. In particular, an estimate 
of the pressure when the corresponding data on the stress deviator are 
available, is of interest. The estimate 

obtained in the paper generalizes the analogous result known for r= 2 I!, 21. 
This jusitifes the elimination of the pressure from a number of problems. 
Moreover, the estimate obtained can be applied directly to, for example, 
the pressure in perfectly plastic and viscoelastic bodies. Sect.1 gives 
an exact formulation of the problem and quotes examples of the cases for 
which it is of interest. The fundamental result is given in Sect.2 and 
proved in Sect.4 after establishing in Sect.3 the assertions used in the 
proof and concerning the fields with prescribed divergence, and re- 
establishment of the distribution over the derivatives. Finally, Sect.5 
gives assertions facilitating the confirmation, for any problem, of the 
conditions under which the fundamental result was obtained. 

1. Examples. Formulation of the problem. Before producing the exact formulation 
of the problem, we will consider several examples. 

*Prikl.Matem.Mekhan.,48,1,123-132,1984 
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Example 1. The problem Of hydromechanics in Stokes' formulation (see e.g. /3/j, in the 
case when the velocity is given on the boundary of the region of flow Q and the motion takes 
place under the action of mass forces of density F reduces, when the pressure is excluded, 
to the problem of determining a solenoidal velocity field u satisfying the equation of the 
principle of virtual velocities 

Y ~+~)eij(V)dz=SFiU,dZ, VVEV’ 
P 

f?ij(V)=+ i, j = L2,. . . n 

(1.1) 

Here v is the coefficient of kinematic viscosity,Vi is the set of virtual (test) velocity 
fields, in this case the set of all smooth solenoidal fields finite in 8, and zi arecartesian 
coordinates in R"(m=2,3). Since divu-0, T~I= v(&J,/& + b’Uj/8Xi) is the stress deviator. 
Problem (1.1) has a solution and x belongs to L,(Q) [4& The problem of supplementing T by 
the pressure field was solved in /I/: a pressure field p belonging to L,(Q) can be found 
such that the stresses U=T +pg satisfy the complete conditions of equilibrium 

s o-e(v)dx -1 Fv dx, VVEV2 
P n 

where Vz is a set of all smooth fields finite in a. Here p 
constant, which can be chosen so that (c is independent of T 

II P Ilwa, s c II T IIL*W 

is defined, apart froman additive 
1 

(1.2) 

Example 2. Let a perfectly plastic medium fill the region P and be under the action of 
mass forces of volume density f and surface forces of density q, specified on the part S, of 
the boundary of Q. The load reserve coefficient (f,q) can be found (see e.g. /S/) as the 
least upper limit of the numbers I'> 0 for which the stress fields IJ exist, not extending 
beyond the yield surface and equilibrating the load (pi, pq). The conditions of equilibrium 
have the form 

S o.e(v)dz=kS fvdx +-p i qvds, vv E v2 $2, S,) (1.3) 
Q n Sq 

where the test velocity fields of which V*(Q, S,) is composed, are smooth and vanish near $, 
(the bar denotes the closure of the set: S,,=aQ \ 3,). 

We can eliminate the spherical component of the stresses from the conditions of equili- 
brium, replacing Va(Q,S,) by the set Vi(62,S,) of the solenoidal velocity fields from 
VZ(Q, S,), the process corresponding to the treatment of the reserve coefficient used in /6/. 
This is accompanied, generally speaking, by weakening of the conditions of equilibrium (due 
to the narrowing of the test velocity fields), and increase in the value of the reserve co- 
efficient. Let n be this value, and let r be the stress deviator field on which this value 
is attained. Agreement between n and the value determined by the usual methods is guaranteed, 
provided that a pressure field p can be found such that U=T -/-pg equilibrates the load 

(4 4). 
Thus here we have a problem analogous to that shown in Example 1, although, unlike 

Example 1, the present problem must be considered for the case of mixed boundary conditions. 
The corresponding generalization of the results of /l/ is obtained in /2/, and the estimate 
(1.2) remains valid. Although this is sufficient to show the equivalence of the two formula- 
tionsofthe problem of perfect plasticity 12, 7/, sharpening the estimate is of interest since 

o=r+p!4 is a real stress field in the body in question. Such a sharpening is possible, 
since in the plastic medium r belongs not only to L,(Q), but also to L,(Q). 

Example 3. Consider incompressible media with a potential relation connecting the stress 

deviator T with the deformation rates e, in which the defining relation for the stress has the 

form 
o=pg+r(e), r(e)=tq/2e 

Such media include non-linearly viscous and viscoplastic bcdies, (see e.g. /g/J, and in part- 
icular the media with potential 

cp W = o1 (4 + o1 (a) + + qrn (6 
where oi is a positively homogeneous function (st>sl>...>s,>li) of degree si. The solv- 

ability of the problem of the slow steady motion of such media is established in the kinematic 

formulation. Here e lies in and the stress deviator z lies corres- 

pondingly in Ls,, ($2) (~1' = %/($I - 1)). 
L,, (n) (for s1 > 1) PI 

As in Example 1 and 2, the problem of introducing the pressure was not considered. If 

s,' 3~ 2. then the possibility of supplementing T by the pressure field p follows from the 
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corresponding results for S1'= 2 (since L,,. (Q)c L&-J) for the bounded region P ). As in 

Example 2, the sharpening of the estimate (1.2) for s,'> 2 is of interest. If on the other 

hand l<s,'<2, the results of /l, 2/ cannot be applied directly and additional discussion 

is necessary. The above examples lead naturally to the following formulation of the problem. 
Let a region Q in Rn(n= 2, 3) be filled with a continuous medium acted upon by mass 

forces of volume density f and surface load of density q, specified on the part S, of the 
boundary of 62. Further, let 

s, = aa '\ s,, Is, = as1 \ S, 

and let the velocity (or displacement) be defined on S,. Let s (sij = sji, stJ E L7 (n), 1 < r < 00, 

i, j = 1,2, . . ., n) be any stress field equilibrating the load (f, 9). Then any stress field 

belonging to L,(Q) and equilibrating this load, can be written in the form a +S where u 

belongs to the set z,* of the stress fields equilibrating the load f=O,q=O 

r12=212(R,S,)=(~:Uij=~ji,UijEL,(n) (i,j=l,Z,...,n), 

[ a.e(v)ds=O, Vv~V~(51,&)} 

iyllJv)=( u g C” (D) : p (supp II, 3,) > 0) 

P (-4, B) is the distance between the sets A and B in R”. 
The stress deviator field equilibrating the load (f,q) less strictly, i.e. satisfying 

the principle of virtual velocities in which only the solenoidal velocity fields are used as 
the test fields, can be written in the form z + sd where 7 belongs to the set 

W=Z,‘(R,S,) ={ T : ‘cij = T jit Zii = 0, Tij E 

L?(Q) (i,j=i,Z,..., n),~o.e(v)ds=O.V~EV~(nS~)} 

V* (8, S,) = {u E Cm (a): div u = 0, p (supp II, S,,)> 0) 

(the superscript d denotes the deviator component of the tensor). 
We require to establish that for any stress field 'F belonging to E,1(Q,S,) , i.e. equil- 

ibrating the given load in a weaker sense, a pressure field p can be found such that r + P8 
belongs to &‘(Q,S,,) , i.e. equilibrates the load in the usual sense. In addition, we must 
obtain an estimate for 11 P ltL,(QP We note that when the force conditions (S,f 0) are given 
on the part m , the pressure field for a given T is determined uniquely; while if the kine- 
matic conditions (% = S,) are specified on the whole boundary, p is defined apart from an 
arbitrary additive constant. 

Note. In determining the sets of selfequilibrated stresses W, TV' we have used the 
virtual velocity fields vanishing near Fe . Lemma 5.3 (see below) implies that this does 
not lead to widening of I,l,Z,* as compared with the sets determined in the same manner but 
for the test velocities which vanish only on S,. 

2. Formulation of the fundamental result. We will introduce the following nota- 
tion: 

u,’ = U,’ (Q, S,) = [{u E Cm (6): div u = 0, p (supp U, S,) > (2.1) 
OIlw,(P) 

IJ,^'= u,-' *(Q, S,)= (U E Wrl(Q): divu- 0, u Is, = 0) 

(square brackets denote the closure of the set in the corresponding space). 

Theorem 2.1. Let D be a bounded Lipshitz region and i <r< 00. Then for any z belong- 

ing to Z,' = 2,'(9, an) a pressure field p can be found such that T +pg belongs to X,2 = 

z,'(Q, an) and (c is independent of T) 

~~PUL,WO<~~~T!JL,~Q~ 

Theorem-2.2. Let n be a bounded region of class 0. Then the force conditions S,#0 
and i<r'<oc are specified on at least a part of its boundary. Let 61 and S, be such that 

u,~(hl,S,)=U31(a,s,) (2.2) 

Then for any T belonging to Z ,'=&?(61,S,,) a pressure field p can be found such that T -j-p8 

belongs to Z,*= 2,a(sZ,S,) and (c is independent of T) 

11 P iiL,(Q) < C 11 T !L,(QP +++=I 

Notes. lo. Assumption (2.2) is obviously formulated unconstructively. Below in Sect.5 
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we shall give simple sufficient conditions guaranteeing the validity of (2.2) and covering 
a wide class of Q and S, for l<r<m. 

20. The question arises of how arbitrary the choice of the pressure field p can be ensur- 
ing satisfaction of the equilibrium conditions for e= rfpg when r re IV', if pis not bound 
by the requirement .p E L,(R). Since the conditions of equilibrium consist, in particular, of 
the relation aQdz'= 0 in the sense of distributions, the arbitrariness in the choice of 
such p in the class of distributions is exhausted by the addition of an arbitrary constant 
if aR= So, If on the other hand 862 +S,(S,# a), then p is uniquely defined. 

Theorems 2.1 and 2.2. answer the question posed in Sect.1. In particular, they allow us 
to assert that, if the given load can in general be balanced by the stress field with bounded 
deviator and pressure, summable in degree r> 1, then any real stress field equilibrating 
this load in aperfectly plastic body also has the pressure summable in the same degree. These 
theorems alsoestablish theexistenceandgive an estimate of the pressure in the case of slow 
steady motions of the medium discussed in Example 3. 

Generally speaking, if for some incompressible medium the pressure enters the conditions 
of equilibrium only, then it can be eliminated from the formulation of the problem. This is 
achieved by replacing the set vl(a,3,,) of test velocity fields by the set I'*@, s,). If the 
"deviator" problem obtained in this manner has a solution with stress deviator summable in 
degree r (and the load given can be equilibrated, in general, by any stress field summable 
in degree r), then Theorems 2.1 and 2.2 imply that the initial problem is also solvable and 
the pressure is summable in the same degree r. 

3. Vector fields with prescribed divergence and reestablishment of the 
distribution over the derivatives. Let us establish the validity of certain assertions 
used in proving Theorems 2.1 and 2.2 and in deriving the sufficient conditions for U,r (9, s,) 

and U,-i(Q,S,) to be identical. The conditions generalize the results known for r= 2 [4, I] 
to the case l<r< ma Below, v will denote the unit normal to the region boundary, and 
we shall also use the notation 

L,r\(8)={uEL,(1;2):SLlds=O} 
n 

As usual, W,rlr' (dB) is the space of traces on dQ of functions belonging to W,r (9) [9,10], 
rt = rl(r - l),l<r<oo. Finally, we denote (different) constants by c. 

Lemma 3.1. Let p be a bounded region belonging to the class C3, 1 <r< 00. Then for 
any a from Wrlfr’ (8X2) such that 

s avds=O 
aa 

the problem (c is independent of a) 

a~ W,l(Q), diva= 0, a lan=et II a /Iw,I(P) < c II eI~w~~r~~ap~ 

has a solution. The proof is analogous to that of the corresponding assertion for r 

Sect-Z). The estimate for II~UW,I(Q) follows from the estimate 

II u lb,.(n) d c II f Ikp, 
of the solution to the Neumann problem 

au 
Au-fin 51,~ an= 

I s 
0, ud+=O (fELrA(s2)) 

Q 

The estimate, in turn, follows from the inequality /ll/ 

(3.1) 

2(/4/f 

iIdyll av $Y(as) 
+ 11 u IIL,(Q) 

and the Petric lemma (Lermna 3 of /12/). From Lemma 3.1, just as in /l/ 

Lemma 3.2. Let Q be a bounded region of class Cs; l<r< 00. Then 
the problem (c is independent of m) 

a E W,"l 6% div a= 'P. II s IIw,w Q c II cp IIL,~) 

for r= 2, we have 

for any cp from L,- (9) 

(3.2) 

has a solution. 
Next we consider the following problem of restoring the distrinution over its derivatives: 

how regular will the distribution of p be, if its derivatives i3pl&’ belong to the space 

IV,_' (a) = (W,*"'(B))'. 
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Theorem 3.1. Let 51 be a bounded Lipshits region (l<r< 00). If p and Xi are distribu- 
tions on Q 

then p belongs to L,(8) and a constant po can be found such that (c is independent of p) 

I( P - PO llL,W .s c I x IIw;lca, (3.3) 

Proof. First we note that it is sufficient to prove the theorem for a star-like region 
(region G is called star-like with respect to the point zL if the x>l -fold contraction of 
G with the centre at z* maps G onto its strictly interior subregion). Indeed, the Lipshits 
region 62 can be written in the form 

where Q2, are star-like. If the theorem holds for a star-like region, then 

In this case we can choose pO so that the estimate (3.3) holds. To do this it is sufficient 
to take /l/ 

,.=(i 
CL=1 

m=%['~l~ Pdx 
a 

Thus below we can assume that Q is a star-like region (relative to zero). 
According to the "structural" theorem for w,-i (Q) ii31 Xf can be written in the form (c 

is independent of X) 

xi = $ + ji, uik E L, (@ fi E h th2) 
(3.4) 

II IJ IIL,(P) < c II x II w,;I (*)’ II f II L,(O) G c II x II w;lcn, 

Let us consider in hR (O<ho<h<l) the averages ph. utkh,flh of the quantities p, aik,jt 
for sufficiently small diameter h of the support of the averaging kernel. The smooth func- 

tions ph. ulkh, j,” in I.!2 satisfy the relation 

aph as:, -=- 
a2 ar’ I- A 

We can apply to these functions the analog of Lemma 2.4 /l/, which is proved for l<r<m 
just as for r= 2[1] (in the proof we use the integral representation of the functions, which 
also applies in the case r# 2 and Lemma 3.2). According to this assertion for the function 

pAh= ph - [mes (i&)]-‘$ ph dx (3.5) 

the following estimate holds: 

II PAh IIL,W) < c 11 -t wo)“‘rl ( II Q IIL,W, + II f IIL#Qd (3.6) 

where c depends only on U&r, n. 

Since oh, f" converges as h+O in L,(Q) to a, f, therefore according to the previous 

inequality pAh also converges to some p-EL,(Q). Here in 162 we have 

$++ji 

and an inequality analogous to (3.6) occurs. Using the fact that P and hQ are similar, .we 
can write this inequality in the form (co depends only on Q,r,n) 

11 P- t/L,(M) < CQ [I + (hh)n’rl (11 u ~IL,O.Qs, + h II f ilL,W) (3.7) 

By virtue of (3.5),p-satisfies the condition 

5 phdx=O 
ha 
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Therefore the functions p-, defined for various h(h,<h< 1) , are identical at the inter- 
sections of their regions of definition and can thus be regarded as contractions on hQ of 
some function P defined on Q . The following relations obviously hold for this function: 

dP q, -=-- 
32' Jr" 

ii= Xi 
(3.8) 

and, in accordance with (3.7), the following estimate holds: 

II p II&) < cn [I + hm (II CJ IIL,(R) + II f IIL,d (3.9) 

We note that by virtue of (3.8) P may differ from p only by a constant. Using (3.4) we 
obtain from the inequality (3.9) the estimate (3.3), and this completes the proof. We will 
use Theorem 3.1 to establish the solvability of problem (3.2) for a much wider classofregions 
than in Lemma 3.2. 

Lemma 3.3. Let52 be a bounded Lipshits region; l<r< 00 . Then problem (3.2) has a 
solution for any rp from L;(Q) (c is independent of cp ) 

Proof. First we confirm that if for given cp 

b E W,” (Q), div b = ‘p (3.10) 

can be found, then we can also find a satisfying (3.2). Indeed, in this case 

U, z (u E WTol (Q): div II = 'p) # @ 

is a closed subspace in W,'(Q) I in which case we can obtain /14/ the lower bound 
inf (II uIlw,,(e) : u = UJ = l/%.,l~n~~ n = U, 

From the necessary condition for a minimum [iSI JIIailn (IJ,)~#~ , i.e. !z E (W,.l (Q))' can be found 
such that 

II gIlcw,tcajjF = 1. a, a) = II a I/w,,~n~, cg. w = 0. Vu E Ua (3.11) 

From the last property it follows /16/ that ‘g = grad* and according to the theorem 3.1 $E 

L,, (Q) I II Ip IlL,.@) d c (the first relation of (3.11) was used). Then 

II a II w,tcnj = wad rlr, 8) = - t@, div a) d I/ * l/L,,cR) II cp IIL,(~) < c II I ilL,(n: 

which it was required to prove. 
Let us now consider the operator div: W,“l(Q)-L,,-(~). Let 

From what was proved we can find a,, E w,"l(Q) with diva,, = vn and IIan lhw,‘(q < cI/ ‘P ~/L,(Q). Then 
we can separate from the sequence (a,,) a subsequence weakly converging in w,l(R) . Let a be 
its limit. Then a E WP’(Q) and diva = cp . This means that the set of values of the operator 
in question is closed. In this case problem (3.10) will have a solution for any up from L,"(Rl, 

if and only if the equation divTf= 0 has only a null solution (the index 2' denotes a conjugate 
operator). Since (L,^)’ is identical as a vector space and has equivalent norm with I+.^ 

and divT = - grad , it follows that the equation has the form grad f=O,fE L,,^ and has clearly 
only a null solution. This means that problem (3.10) has a solution and hence, as was shown 
above, also (3.2). This proves the lemma. An analogous assertion was proved for r=2 for 
a some what wider class of regions in /l/. 

4. Proof of Theorems 2.1 and 2.2. When r= 2 the corresponding assertions were 
proved in /l, 2/. The proofs for 1 <r<W are carried out by the same scheme, using 
Theorem 3.1 and Lemma 3.3 proved above. 

Proof of Theorem 2.1. Since 7 E Z,'(Q,aR), it f0110ws that <aTtj'az', vi> = 0 for any v 

from D(Q) with div v= 0. Then a distribution /16/ of p on Q can be found such that 

ap ih.. 
$LL= 

az’ as 
0 

We note that &,,I&$ belongs to the space W,-l(Q) conjugate to w/'(n), and 

(4.1) 

&ij I II 7 W;‘(O) 
d c n %j IIL,(P) 

By Theorem 3.1, p belongs to L,(Q) and can be chosen so that 1) p Ill, Q c II T IlLAs). Then s= 
T -I- pgE L,(Q) and by virtue of (4.1) we have 

<of,, av,/azj) = 0, Vv E D (51) (4.2) 

Since when aQ= s, the set of test velocity fields P'(Q,S,,) is identical with D (Q), 
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(4.2) means that QEZ?(% &) , which completes the proof. 

proof of Theorem 2.2. First we will establish, as before, the existence of a pressure 

field POE -% @) such that 

aa. .D 
'1 =o at) (QO=r -i- $I$). I/p" iIL,(Q,<ctir !L,@) (4.3) 

Further, we can collect the vectors Q(i)' with components (U.ir*, oil", . . fl UiRf and consider the 
traces y(i) of their normal components on &l . As in /17/ we confirm, that for any v from 
U7,' we have 

<?, v bQ> = 0, Y = (YW? Ym . . . . Y(d) (4.4) 

Were v belongs to @?!'(aa) [g, IO] and y to the space conjugate to it. This, together with 

14.41, follows from (4.3) and the following assertion. 

Lemma 4.1. Let ~~=ulaQv be the trace on aa of the normal component of the field u 
smooth in a , which can be considered as a continuous linear functional on W:lr (X2) acting 
according to the formula 

If D is a bounded region of class Ci, the mapping u+ + can be continued to the continuous 
linear mapping 

into the space 

I& 6% 

Lemma 4.1 is proved in the same manner as the analogous assertion in /17/. We note in 

from the space 

K, (0) = {u E L, $2) : div u E L,(Q)}, !l u @c,m~ = U = llL,cn) + II div u I’L,ca, 

(W:“(Xt))‘,‘ The following formula holds for any w from W,J(Q) and any u from 

~wdivudz=- S ugradwdx+(+w/en) (4.5) 
n 

addition that the last term on the right-hand side of (4.5) can be found as 

where (a("$ denotes any sequence of smooth functions converging to P in K,(@. 
If now u is any field belonging to 

'U7.2 = u,s* (62, S,) = IV2 (62, S,)IW,J,Q) 

then using Lemma 3.3 we find, as in /17/, that 

(y,uJaa) = co 5 uv ds, co- <'Y9uclIao> 
80 

where u. is any field from U,,* for which 

uOIsg=O BSpil*vds=l 

Then putting p = p" -cO we find from (4.5) using (4.3), that for u =T +pg 

5 
Oij 2 dx = (0, U Ian) - (Co% u /en> = 0, vu E u,.a 

and hence Q belongs to 2,s . Further, since 

ice 1 < c II ‘1’ ll(w;!‘csn,, 

and the mapping of the trace is continuous according to Lemma 4.1, we have /co I<.<;c 1) u”/JLrc~),- 
which together with inequality (4.3) yields the estimate 

which completes the proof. 

5. The sufficient conditions for u,l and u,-1 to be identical. The formula- 
tion of Theorem 2.1 includes the assumption that the sets U,~(L;1,S,),U,^1(i2,S,) (see (2.1)) are 
identical, or in other words, the assumption that the smooth solenoidal fields, vanishing in- 
the neighbourhood of So , are dense in the subspace of solenoidal fields with null trace on 

s, * belonging to \V71(it). Below we will give the conditions which ensure that this assumption 
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holds. We use the congruence of the corresponding sets 

Url(Q, dR) = [(II E D (Q): div u = O)],,.?,(n, 

U,-' (Q, X2) = (u E W,'(R) : div u = 0. u IbR = 0) 

with S,=aQ [1,181 (which follows also from Theorem 3.1). We introduce the notation 

u,z = UT? (62, S,) = [(u E C" @): p (su!?p u. 3,) > OJlw,*(n) 

I_,,^" = U,-* (Q, S,) = (u E W,l(R): div u = 0, u Is = 0) 
0 

The following lemma is proved in the same way as Theorem 3.1 /17/. 

Lemma 5.1. Let 1) Q be a bounded, strictly Lipshits region; 2) S, can be regarded as a 
common part of the boundaries of the intersecting regions R and Q'where Q'is Lipshits; 3) 
region G contains P and Q'and is such that G= QU Q' is Lipshits; 4) for some r(l<r<co) 
U?(Q, S,) = U,-*(Q, S,). Then U?(Q,S,)=U,^'(Q. S,). The sufficient conditions for assumption 4 
to hold are given by Lemma 5.3, and we shall give another assertion indicating the simple 
conditions for u,' and U,^l to be identical. 

Let $2 and S, be regularly assembled from the regions Q'and Q" and parts of their bound- 
aries So' and s," respectively (for the definition of regular assembly see e.g. /17/, Sect.3). 
Then the intersection Q'n R" decomposes into a finite number of mutually unconnected regions 
oi (i = 1, 2, ., N). Let us also write s'= v (% n 9") and s" = (j (min *‘) - 

Lemma 5.2. Let 1) Q and S, be regularly assembled from Q',Q" and S,*'.S,," respectively; 
2) Q, Qi (i = iv 2, . .., N) are Lipshits regions and the boundary of S2i contains a non-empty set 
open in aDi and lying in S,; 3) the following relations hold for some ~(1 <r<ca) : 

L-g (Q’, S” u S’) = u,-1 (&a’, So’ u S’), U,’ (c-r, S”” u S”) = G-1 (Q”, S,” :; S”) 

Then Up' (Q,S,) = U,^1(9, S,). Its proof is analogous to that of Theorem 3.2 /17/ wherewe should 
use Lemma 3.3 in place of the corresponding assertion for r=2. 

Let us now return to the problem of the identical form of the sets u," and u,-? (see the 
conditions of Lemma 5.1). 

Lemma 5.3. Let Q be a bounded region of class Cl and S, a regular part of its boundary. 

Then U?(Q. S.) = UvLe (Q, S,). The proof and the concept of regularity are the same as in Lemma 
2.1 /ll/. We merely note that the sufficient condition for the regularity of the set Sv is, 
that it (not necessarily connected) should be bounded by a finite number of Lipshits curves. 
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THE INVERSE PROBLEM OF ACOUSTIC-WAVE SCATTERING FOR 
THIN ACOUSTICALLY RIGID BODIES* 

V.F. EMETS 

A description of an analytical algorithm for determining the shape of the 
scatterer with acoustically rigid walls is given for low-frequency 
scattering of plane acoustic waves. It is assumed that the amplitude of 
the scattering is known in a direction close to the direction of backward 
scattering, specified on a discrete set of probing wave numbers. The 
incident wavelength is of the order of the length of the scatterer and 
is much greater than its thickness. 

A problem similar to this was discussed in /l/, where, however, it 
was assumed that the amplitude of the scattered plane waves is known on 
the surface of the unit sphere, and in a continuous spectrum of fairly 
small wave numbers. It was also assumed that there is a priori informa- 
tion available on the minimum radius of the sphere containing the 
scatterer inside it, and that the constant which limits the potential 
gradient of the velocity of the liquid outside the sphere is known for 
the problem of determining the streamlines of a vortex-free liquid. 

Suppose that an absolutely rigid bodyD,with a boundary S, described by the equation 

r = eF (t, cp), 0 < t < a, 0 < cp Q 2n, F (0, 9) = F (a, cp) = 0 (1) 

is situated in a space filled with an acoustic medium, where r, cp, t are cylindrical coordin- 
ates with origin at the point 0, and E > 0 is a small parameter. The function F* (t,q) is 
assumed to be integrable with a square on the surface of the unit cylinder G={O,<t<a, 
O< cp <2n, r = f}. we will assume that a plane wave u,,(x)= Aoexp [ik(l,x)l is incident from 
infinity on the body D,(here and henceforth the time factor exp L--ikazl is omitted), where 
1 = (I,, 1% 13) is the unit vector indicating the direction of propagation of the wave, A, is 
its amplitude, x = (xl,x,,x3) is the radius vector of an arbitrary point of space drawn from 
the point 0, (,) is scalar multiplication, and k is the wave number, which is assumed to real 
and positive. The scattered field Up(x) satisfies the Helmholtz equation in the exterior D 
of the body D,, and the boundary condition 

(A + kz) up (x) = 0; duddn = -du,ldn, x E S (2) 

and also the Sommerfeld radiation condition, which can be written in the form 

up(x) = -4n Ix I-lexp (ik Ix I)f(k;l,v) +0(1x I-1) 

(lx I--~) 
Here A is the Laplace operator, didn is the derivative with respect to the direction 

of the external normal to S, Ix 1 = (x,x)L/* is the length of the vector x, v = x (x I-1 is the 
unit vector in the direction x, and f(k;l, V) is the scattering amplitude. 

Consider the problem of determining the function sF(t, Cp) from the scattering amplitude 
known in one of the directions in space, specified by a discrete set of wave numbers. 

The solution of the direct problem (l), (2) is unique and can be represented for x ES 
as the solution of the integral equation /2/ 
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